We report the purification, molecular cloning, and characterization of a 40-kDa glycerophosphodiester phosphodiesterase homolog from Borrelia hermsii. The 40-kDa protein was solubilized from whole organisms with 0.1% Triton X-100, phase partitioned into the Triton X-114 detergent phase, and purified by fastperformance liquid chromatography (FPLC). The gene encoding the 40-kDa protein was cloned from a B. hermsii chromosomal DNA lambda EXlox expression library and identified by using affinity antibodies generated against the purified native protein. The deduced amino acid sequence included a 20-amino-acid signal peptide encoding a putative leader peptidase II cleavage site, indicating that the 40-kDa protein was a lipoprotein. Based on significant homology (31 to 52% identity) of the 40-kDa protein to glycerophosphodiester phosphodiesterases of Escherichia coli (GlpQ), Bacillus subtilis (GlpQ), and Haemophilus influenzae (Hpd; protein D), we have designated this B. hermsii 40-kDa lipoprotein a glycerophosphodiester phosphodiesterase (Gpd) homolog, the first B. hermsii lipoprotein to have a putative functional assignment. A nonlipidated form of the Gpd homolog was overproduced as a fusion protein in E. coli BL21(DE3)(pLysE) and was used to immunize rabbits to generate specific antiserum. Immunoblot analysis with anti-Gpd serum recognized recombinant H. influenzae protein D, and conversely, antiserum to H. influenzae protein D recognized recombinant B. hermsii Gpd (rGpd), indicating antigenic conservation between these proteins. Antiserum to rGpd also identified native Gpd as a constituent of purified outer membrane vesicles prepared from B. hermsii. Screening of other pathogenic spirochetes with anti-rGpd serum revealed the presence of antigenically related proteins in Borrelia burgdorferi, Treponema pallidum, and Leptospira kirschneri. Further sequence analysis both upstream and downstream of the Gpd homolog showed additional homologs of glycerol metabolism, including a glycerol-3-phosphate transporter (GlpT), a glycerol-3-phosphate dehydrogenase (GlpD), and a thioredoxin reductase (TrxB).The pathogenic spirochete Borrelia hermsii is one of the etiologic agents of tick-borne relapsing fever. Infection in humans and other vertebrates is commonly characterized by recurring episodes of high fever and bacteremia with intermittent afebrile periods (55). In humans, other clinical manifestations may include pronounced muscle and joint pains, splenomegaly, hepatomegaly, jaundice, and rash, as well as respiratory, cardiovascular, and central nervous system involvement (7). The well-documented relapse phenomenon is associated with the ability of these organisms to undergo multiphasic antigenic variation during the course of disease (56). A major surfaceexposed lipoprotein designated the variable membrane protein (Vmp) has been correlated with this antigenic variation (4, 9, 11). This switching from an initial Vmp type to another prior to the establishment of a protective antibody response is thought to enable the escape of...