The Sierra de Cacheuta vein-type Se mineralization in the Mendoza Province predominantly consists of clausthalite, klockmannite, eskebornite, eucairite, and naumannite. These primary selenides formed in a fault zone, cutting through fine-grained trachytic host rock. Cross-sections perpendicular to the veinlets, polarized light microscopy, and scanning-electron microscopy, combined with electron-microprobe analysis, provide a record of the relationship between different crystallization and deformation events. Mineralization encompasses four episodes of fault formation (d1-d4): early zonal selenide crystallization (stage (I)); ductile deformation of the selenides (stage (II)); fault re-opening, fluid-mediated metal mobilization, metalliferous-fluid infiltration, and mineral precipitation (stage (III)); and subsequent alteration (stage (IV)). The Se vein originated from multiple injections of highly oxidized, metal-rich fluids. These low-T solutions (estimated max. temperature 100 • C, max. pressure 1 bar) possessed high to exceptionally high Se fugacities (log f Se2 between −14.5 and −11.2) that prevailed for most of the evolution of the deposit. The source of the Se and the accompanying metals (Cu, Ag, Pb, and Fe) is probably the neighboring bituminous shale. The deposition of Se minerals occurred when the oxidized metal-bearing solutions came in contact with a reductant, which caused the reduction of mobile selenate to immobile selenide or elemental Se. We identified several features that permit us to safely distinguish samples from Cacheuta from Argentinian Se deposits in the Province of La Rioja: (I) trachytic host rock fragments containing bitumen and TiO 2 pseudomorphs after titanomagnetite; (II) early Co-rich and Ni-poor krut'aite (Co < 6.7 wt %, Ni < 1.2 wt %) partly replaced by clausthalite, umangite, klockmannite, eskebornite, Ni-poor tyrrellite (Ni < 2.7 wt %), Ni-poor trogtalite (Ni < 1.2 wt %), and end-member krut'aite and petříčekite; (III) lack of calcite gangue; and (VI) Se-bearing alteration minerals comprising chalcomenite, molybdomenite, cobaltomenite, an unnamed Cu selenide (for which the ideal formula may be either Cu 2 Se 3 or Cu 5 Se 8 ), and possibly mandarinoite, mereheadite, orlandiite, and scotlandite as new species for this occurrence.