The ability to achieve exquisite control over polymer building blocks within multicompartment magnetite nanocomposites (NCs) to afford predictable and ordered packing hierarchical structures remains a significant challenge for the design of NCs. Thus, there is an urgent need to develop new types of nano-dimensional assemblies that undergo responsive shape shift, size, phase, and morphological transitions, especially for processes that are triggered by biologically relevant stimuli such as ionic gradients to meet the demand for diverse applications. Accordingly, we report an unprecedented concept for the preparation of salt-responsive magnetite/polyaniline composite nanoassemblies with chemically distinct dual-compartment structures. The size, shape, and nano-dimensional phase separation of the PANI assemblies within NCs were adjusted in a facile manner with incremental changes in salt gradients using NaCl(aq). Composition effects bestow desirable diversiform shape, size, and phase behavior of the incorporated conductive polymer via dynamic H-bonding. The size, shape, and superparamagnetic character of iron oxide nanoparticles (IONPs) are unaffected by a "salting-in" process. The mechanism, gradual morphological evolution, interchangeable nanophase separation, and ion-stimulated disassembly of PANI building blocks for these magneto/ion-responsive polymer-composites at elevated ionic strength are strongly supported by DLS, Raman spectroscopy, TEM, and equilibrium dye (MB/MO) recognition studies.