A facile strategy is reported here for synthesis of Zn-Cu-In-S/ZnS (ZCIS/ZnS) core/shell QDs to address the synthetic issues that the unexpected blue-shift of CuInS2-based nanocrystals. In this strategy, Zn2+ ions are intentionally employed for the synthesis of alloyed ZCIS core QDs before ZnS shell coating, which contributes to the reduced blue-shift in photoluminescence (PL) emission. The experimental results demonstrate this elaborate facile strategy is effective for the reduction of blue-shift during shell growth. Particularly, a hypothesis is proposed and proved for explanation of this effective strategy. Namely, both cation exchange inhibition and ions accumulation are involved during the synthesis of ZCIS/ZnS QDs. Furthermore, the obtained near infrared (NIR) ZCIS/ZnS QDs are transferred into aqueous phase by a polymer coating technique and coupled with cyclic Arg-Gly-Asp peptide (cRGD) peptides. After confirmation of biocompability by cytotoxicity test on normal 3T3 cells, these QDs are injected via tail vein into nude mice bearing U87 MG tumor. The result indicates that the signals detected in the tumor region are much more distinguishing injected with ZCIS/ZnS-cRGD QDs than that injected with ZCIS/ZnS QDs.
Convenient and fast testing using an immunochromatography test strip (ICTS) enables rapid yes/no decisions regarding a disease to be made. However, the fundamental limitations of an ICTS, such as a lack of quantitative and sensitive analysis, severely hampers its application in reliable medical testing for the early detection of cancer. Herein, we overcame these limitations by integrating an ICTS with quantum dot nanobeads (QD nanobeads), which were fabricated by encapsulating QDs within modified poly(tert-butyl acrylate-co-ethyl acrylate-co-methacrylic acid) and served as a robust signal-generating reagent for the ICTS. Prostate specific antigen (PSA) was used as a model analyte to demonstrate the performance of the QD nanobeads-based ICTS platform. Under optimized conditions, the concentration of PSA could be determined within 15 min with high sensitivity and specificity using only 40 μL of sample. The detection limit was enhanced by ∼12-fold compared with that of an ICTS that used QDs encapsulated by commercial 11mercaptoundecanoic acid (QDs@MUA) as the signal-generating reagent. At the same time, the possible clinical utility of this approach was demonstrated by measurements recorded from PSA-positive patient specimens. Our data suggest that the QD nanobeads-based ICTS platform is not only rapid and low-cost but also highly sensitive and specific for use in quantitative pointof-care diagnostics; thus, it holds promise for becoming a part of routine medical testing for the early cancer of detection.
Self-assembled nanostructures based on amphiphilic protein-polymer conjugates have shown great advantages in the field of nanomedicine such as inherent biocompatibility with biosystems because of their excellent performance. Herein, a novel biodegradable protein-polymer conjugate was prepared by covalently linking the tailor-made hydrophobic maleimide-functionalized poly(ε-caprolactone) (PCL) to hydrophilic bovine serum albumin (BSA) via the maleimide-sulfhydryl coupling reaction. This protein-based conjugate with a biodegradable polyester was reported for the first time, and the obtained biohybrid displayed well-defined structure, excellent biocompatibility and low cytotoxicity, and self-assembly behaviors similar to those of the traditional amphiphilic small molecules and block copolymers. The amphiphilic BSA-PCL conjugate can self-assemble into a nanosized vesicle with a negative surface charge. Furthermore, the self-assembled vesicle based on the BSA-PCL conjugate was functionalized via linking targeting ligand cetuximab to its surface to enhance cell uptake, and the doxorubicin (DOX)-encapsulated cetuximab-functionalized vesicle exhibited enhanced antitumor activity compared with that of free DOX in vitro. These results indicate that the biodegradable protein-polymer conjugate based on BSA and PCL had great potential as a drug delivery vehicle for cancer therapy.
In clinic, the application of photodynamic therapy (PDT) in deep tissue is severely constrained by the limited penetration depth of visible light needed for activating the photosensitizer (PS). In this Article, a merocyanine 540 (MC540) and upconverting nanoparticle (UCN) coloaded functional polymeric liposome nanocarrier, (MC540 + UCN)/FPL, was designed and constructed successfully for solving this problem in PDT. Compared with the conventional approaches using UCNs absorbing PSs directly, the combination of UCN and polymeric liposome has unique advantages. The UCN core as a transducer can convert deep-penetrating near-infrared light to visible light for activating MC540. The functional polymeric liposome shell decorated with folate as a nanoshield can keep the UCN and MC540 stable, protect them from being attacked, and help them get into cells. The results show that (MC540 + UCN)/FPL is an individual nanosphere with an average size of 26 nm. MC540 can be activated to produce singlet oxygen successfully by upconverting fluorescence emitted from UCNs. After (MC540 + UCN)/FPL was modified with folate, the cell uptake efficiency increased obviously. More interestingly, in the PDT effect test, the (MC540 + UCN)/FPL nanocarrier further improved the inhibition effect on tumor cells by anchoring targeting folate and transactivating transduction peptide. Our data suggest that the (MC540 + UCN)/FPL nanocarrier may be a useful nanoplatform for future PDT treatment in deep-cancer therapy based on upconversion mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.