A previous dielectric, near-infrared (NIR), and nuclear magnetic resonance study on the hydrogen-bonded liquid 2-ethyl-1-hexanol [C. Gainaru et al., Phys. Rev. Lett. 107, 118304 (2011)] revealed anomalous behavior in various static quantities near 250 K. To check whether corresponding observations can be made for other monohydroxy alcohols as well, these experimental methods were applied to such substances with 5, 6, 7, 8, and 10 carbon atoms in their molecular backbone. All studied liquids exhibit a change of behavior near 250 K which is tentatively ascribed to effects of hydrogen bond cooperativity. By analyzing the NIR band intensities, a linear cluster size is derived that agrees with estimates from dielectric spectroscopy. All studied alcohols, except 4-methyl-3-heptanol, display a dominant Debyelike peak. Furthermore, neat 2-ethyl-1-butanol exhibits a well resolved structural relaxation in its dielectric loss spectrum which so far has only been observed for diluted monohydroxy alcohols.