To achieve high-performance sensorless control of permanent magnet motors with non-sinusoidal back electromotive force (EMF), an improved sliding mode observer (SMO) adopting synchronous rotating low-pass filter (SRLPF) is proposed. The SRLPF is utilised to reduce the back-EMF harmonics and extract the fundamental component. Different from the traditional rotor position observer, the proposed observer can calculate the rotor position with the back-EMF fundamental component. Owing to the decrease in the influence of non-sinusoidal back-EMF, the estimated rotor position harmonic ripple error can be greatly reduced. Then, the high estimated accuracy and excellent sensorless control performance can be obtained. In addition, the proposed strategy is easy for implementation. With the comparison between the traditional SMO and the proposed observer, the experiments of the system steady-state error, the speed tracking performance, and the disturbance rejection ability in the speed range from 60 r/min to the rated speed 750 r/min are presented. The validity of the proposed method is conformed.