2022
DOI: 10.48550/arxiv.2207.11747
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Self-dual polyhedral cones and their slack matrices

Abstract: We analyze self-dual polyhedral cones and prove several properties about their slack matrices. In particular, we show that self-duality is equivalent to the existence of a positive semidefinite (PSD) slack. Beyond that, we show that if the underlying cone is irreducible, then the corresponding PSD slacks are not only doubly nonnegative matrices (DNN) but are extreme rays of the DNN matrices, which correspond to a family of extreme rays not previously described. This leads to a curious consequence for 5 × 5 DNN… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?