Abstract:We analyze self-dual polyhedral cones and prove several properties about their slack matrices. In particular, we show that self-duality is equivalent to the existence of a positive semidefinite (PSD) slack. Beyond that, we show that if the underlying cone is irreducible, then the corresponding PSD slacks are not only doubly nonnegative matrices (DNN) but are extreme rays of the DNN matrices, which correspond to a family of extreme rays not previously described. This leads to a curious consequence for 5 × 5 DNN… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.