In this work we present an extension of Chubanov's algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov's method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an earlier work by Kitahara and Tsuchiya on second order cone feasibility problems, progress is measured through the volumes of those intersections: when they become sufficiently small, we know it is time to stop. We never have to explicitly compute the volumes, it is only necessary to keep track of the reductions between iterations. We show this is enough to obtain concrete upper bounds to the minimum eigenvalues of a scaled version of the original feasibility problem. Another distinguishing feature of our approach is the usage of a spectral norm that takes into account the way that K is decomposed as simple cones. In several key cases, including semidefinite programming and second order cone programming, these norms make it possible to obtain better complexity bounds for the basic procedure when compared to a recent approach by Peña and Soheili. Finally, in the appendix, we present a translation of the algorithm to the homogeneous feasibility problem in semidefinite programming.
We provide a framework for obtaining error bounds for linear conic problems without assuming constraint qualifications or regularity conditions. The key aspects of our approach are the notions of amenable cones and facial residual functions. For amenable cones, it is shown that error bounds can be expressed as a composition of facial residual functions. The number of compositions is related to the facial reduction technique and the singularity degree of the problem. In particular, we show that symmetric cones are amenable and compute facial residual functions. From that, we are able to furnish a new Hölderian error bound, thus extending and shedding new light on an earlier result by Sturm on semidefinite matrices. We also provide error bounds for the intersection of amenable cones, this will be used to prove error bounds for the doubly nonnegative cone. At the end, we list some open problems.
We present FRA-Poly, a facial reduction algorithm (FRA) for conic linear programs that is sensitive to the presence of polyhedral faces in the cone. The main goals of FRA and FRA-Poly are the same, i.e., finding the minimal face containing the feasible region and detecting infeasibility, but FRA-Poly treats polyhedral constraints separately. This reduces the number of iterations drastically when there are many linear inequality constraints. The worst case number of iterations for FRA-Poly is written in the terms of a "distance to polyhedrality" quantity and provides better bounds than FRA under mild conditions. In particular, in the case of the doubly nonnegative cone, FRA-Poly gives a worst case bound of n whereas the classical FRA is O(n 2 ). Of possible independent interest, we prove a variant of Gordan-Stiemke's Theorem and a proper separation theorem that takes into account partial polyhedrality. We provide a discussion on the optimal facial reduction strategy and an instance that forces FRAs to perform many steps. We also present a few applications. In particular, we will use FRA-Poly to improve the bounds recently obtained by Liu and Pataki on the dimension of certain affine subspaces which appear in weakly infeasible problems.
In this article, we develop a detailed analysis of semidefinite feasibility problems (SDFPs) to understand how weak infeasibility arises in semidefinite programming. This is done by decomposing a SDFP into smaller problems, in a way that preserves most feasibility properties of the original problem. The decomposition utilizes a set of vectors (computed in the primal space) which arises when we apply the facial reduction algorithm to the dual feasible region. In particular, we show that for a weakly infeasible problem over n × n matrices, at most n − 1 directions are required to approach the positive semidefinite cone. We also present a discussion on feasibility certificates for SDFPs and related complexity results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.