In this short paper, we give an upper bound for the number of different basic feasible solutions generated by the simplex method for linear programming problems having optimal solutions. The bound is polynomial of the number of constraints, the number of variables, and the ratio between the minimum and the maximum values of all the positive elements of primal basic feasible solutions. When the primal problem is nondegenerate, it becomes a bound for the number of iterations. We show some basic results when it is applied to special linear programming problems. The results include strongly polynomiality of the simplex method for Markov Decision Problem by Ye [3] and utilize its analysis.
In this work we present an extension of Chubanov's algorithm to the case of homogeneous feasibility problems over a symmetric cone K. As in Chubanov's method for linear feasibility problems, the algorithm consists of a basic procedure and a step where the solutions are confined to the intersection of a half-space and K. Following an earlier work by Kitahara and Tsuchiya on second order cone feasibility problems, progress is measured through the volumes of those intersections: when they become sufficiently small, we know it is time to stop. We never have to explicitly compute the volumes, it is only necessary to keep track of the reductions between iterations. We show this is enough to obtain concrete upper bounds to the minimum eigenvalues of a scaled version of the original feasibility problem. Another distinguishing feature of our approach is the usage of a spectral norm that takes into account the way that K is decomposed as simple cones. In several key cases, including semidefinite programming and second order cone programming, these norms make it possible to obtain better complexity bounds for the basic procedure when compared to a recent approach by Peña and Soheili. Finally, in the appendix, we present a translation of the algorithm to the homogeneous feasibility problem in semidefinite programming.
Recently, Chubanov proposed an interesting new polynomial-time algorithm for linear program. In this paper, we extend his algorithm to second-order cone programming.
get two upper bounds for the number of different basic feasible solutions generated by Dantzig's simplex method. The size of the bounds highly depends on the ratio between the maximum and minimum values of all the positive elements of basic feasible solutions. In this paper, we show some relations between the ratio and the number of iterations by using an example of LP, which is a simple variant of Klee-Minty's LP. We see that the ratio for the variant is equal to the number of iterations by Dantzig's simplex method for solving it. This implies that it is impossible to get a better upper bound than the ratio. We also give improved results of the upper bounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.