The current LTE and LTE-A deployments require larger efforts to achieve the radio resource management. This, due to the increase of users and the constantly growing demand of services. For this reason, the automatic optimization is a key point to avoid issues such as the inter-cell interference. This paper presents several proposals of machine-learning algorithms focused on this automatic optimization problem. The research works seek that the cellular systems achieve their self-optimization, a key concept within the self-organized networks, where the main objective is to achieve that the networks to be capable to automatically respond to the particular needs in the dynamic network traffic scenarios.