2005
DOI: 10.1007/11428862_65
|View full text |Cite
|
Sign up to set email alerts
|

Self-organizing Maps as Substitutes for K-Means Clustering

Abstract: Abstract. One of the most widely used clustering techniques used in GISc problems is the k-means algorithm. One of the most important issues in the correct use of k-means is the initialization procedure that ultimately determines which part of the solution space will be searched. In this paper we briefly review different initialization procedures, and propose Kohonen's SelfOrganizing Maps as the most convenient method, given the proper training parameters. Furthermore, we show that in the final stages of its t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
64
0
4

Year Published

2007
2007
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 198 publications
(69 citation statements)
references
References 25 publications
1
64
0
4
Order By: Relevance
“…Los SOM son relativamente insensibles a los valores perdidos, tolerando a la vez datos con una distribución no normal ); esto le permite prescindir de verificaciones de difícil cumplimiento, haciéndolo válido para cualquier distribución de datos. Por otro lado como método de clusterización el SOM es más robusto que por ejemplo el K-means, aunque en su contra requiere mayor tiempo de computación (Bação, Lobo, & Painho, 2005;Gomes et al, 2007).…”
Section: Metodología De Investigaciónunclassified
“…Los SOM son relativamente insensibles a los valores perdidos, tolerando a la vez datos con una distribución no normal ); esto le permite prescindir de verificaciones de difícil cumplimiento, haciéndolo válido para cualquier distribución de datos. Por otro lado como método de clusterización el SOM es más robusto que por ejemplo el K-means, aunque en su contra requiere mayor tiempo de computación (Bação, Lobo, & Painho, 2005;Gomes et al, 2007).…”
Section: Metodología De Investigaciónunclassified
“…A SOM with a number of units equal to the number of clusters in the data set and a neighborhood equal to zero will act as a traditional clustering technique (Kaski, 1997). A SOM may, however, be used in two very distinct ways: a large SOM, also known as emergent SOM, with many units, used for exploratory data analysis and cluster detection (Ultsch and Herrmann, 2005), and a small SOM for cluster centroid determination (Bação et al, 2005b). In this study, both SOM and GEO3DSOM are used for exploratory detection of clusters.…”
Section: Standard Sommentioning
confidence: 99%
“…In emergent SOM's on the other hand, clearly separated groups of units may or may not be detected. Small SOM's used for centroid determination will act as a robust K-means initialization in the first training iterations and due to the decrease of learning radius and neighborhood during training, the SOM will perform exactly as a K-means clustering in the final steps of the learning process (Bação et al, 2005b). Compared to K-means clustering and fuzzy c-means clustering, SOM has, in addition to the ability of SOM to directly visualize the results of the clusters in terms of the original variables, the advantage that the number of clusters does not need to be specified a priori.…”
Section: Standard Sommentioning
confidence: 99%
See 1 more Smart Citation
“…Although there are several different variations and optimizations of K-Means algorithm 21 , this paper is focused on its four methods (Lloyd, Forgy, MacQueen and Hartigan-Wong).…”
Section: Clustering Techniquesmentioning
confidence: 99%