Citizens are increasingly becoming an important source of geographic information, sometimes entering domains that had until recently been the exclusive realm of authoritative agencies. This activity has a very diverse character as it can, amongst other things, be active or passive, involve spatial or aspatial data and the data provided can be variable in terms of key attributes such as format, description and quality. Unsurprisingly, therefore, there are a variety of terms used to describe data arising from citizens. In this article, the expressions used to describe citizen sensing of geographic information are reviewed and their use over time explored, prior to categorizing them and highlighting key issues in the current state of the subject. The latter involved a review of 100 Internet sites with particular focus on their thematic topic, the nature of the data and issues such as incentives for contributors. This review suggests that most sites involve active rather than passive contribution, with citizens typically motivated by the desire to aid a worthy cause, often receiving little training. As such, this article provides a snapshot of the role of citizens in crowdsourcing geographic information and a guide to the current status of this rapidly emerging and evolving subject.
Massive open online courses (MOOCs), contribute significantly to individual empowerment because they can help people learn about a wide range of topics. To realize the full potential of MOOCs, we need to understand their factors of success, here defined as the use, user satisfaction, along the individual and organizational performance resulting from the user involvement. We propose a theoretical framework to identify the determinants of successful MOOCs, and empirically measure these factors in a real MOOC context. We put forward the role of gamification and suggest that, together with information system (IS) theory, gamification proved to play a crucial role in the success of MOOCs.
Abstract. One of the most widely used clustering techniques used in GISc problems is the k-means algorithm. One of the most important issues in the correct use of k-means is the initialization procedure that ultimately determines which part of the solution space will be searched. In this paper we briefly review different initialization procedures, and propose Kohonen's SelfOrganizing Maps as the most convenient method, given the proper training parameters. Furthermore, we show that in the final stages of its training procedure the Self-Organizing Map algorithms is rigorously the same as the kmeans algorithm. Thus we propose the use of Self-Organizing Maps as possible substitutes for the more classical k-means clustering algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.