Attention is a cognitive process that involves focusing mental resources on specific stimuli and plays a fundamental role in perception, learning, memory, and decision-making. Neurofeedback (NF) is a useful technique for improving attention, providing real-time feedback on brain activity in the form of visual or auditory cues, and allowing users to learn to self-regulate their cognitive processes. This study compares the effectiveness of different cues in NF training for attention enhancement through a multimodal approach. We conducted neurological (Quantitative Electroencephalography), neuropsychological (Mindfulness Attention Awareness Scale-15), and behavioral (Stroop test) assessments before and after NF training on 36 healthy participants, divided into audiovisual (G1) and visual (G2) groups. Twelve NF training sessions were conducted on alternate days, each consisting of five subsessions, with pre- and post-NF baseline electroencephalographic evaluations using power spectral density. The pre-NF baseline was used for thresholding the NF session using the beta frequency band power. Two-way analysis of variance revealed a significant long-term effect of group (G1/G2) and state (before/after NF) on the behavioral and neuropsychological assessments, with G1 showing significantly higher Mindfulness Attention Awareness Scale-15 scores, higher Stroop scores, and lower Stroop reaction times for interaction effects. Moreover, unpaired t-tests to compare voxel-wise standardized low-resolution brain electromagnetic tomography images revealed higher activity of G1 in Brodmann area 40 due to NF training. Neurological assessments show that G1 had better improvement in immediate, short-, and long-term attention. The findings of this study offer a guide for the development of NF training protocols aimed at enhancing attention effectively.