2009
DOI: 10.1016/j.physa.2009.01.024
|View full text |Cite
|
Sign up to set email alerts
|

Self-similarity degree of deformed statistical ensembles

Abstract: a b s t r a c tWe consider self-similar statistical ensembles with the phase space whose volume is invariant under the deformation that squeezes (expands) the coordinate and expands (squeezes) the momentum. The related probability distribution function is shown to possess a discrete symmetry with respect to manifold action of the Jackson derivative to be a homogeneous function with a self-similarity degree q fixed by the condition of invariance under (n + 1)-fold action of the related dilatation operator. In s… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
9
0
2

Year Published

2009
2009
2013
2013

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(11 citation statements)
references
References 37 publications
0
9
0
2
Order By: Relevance
“…формулу (П.1)), представляющей степенную функцию p(x). Исследование условий самоподобия показывает, что их выполнение обеспечивается уравнением [41] …”
Section: обсуждение результатовunclassified
See 1 more Smart Citation
“…формулу (П.1)), представляющей степенную функцию p(x). Исследование условий самоподобия показывает, что их выполнение обеспечивается уравнением [41] …”
Section: обсуждение результатовunclassified
“…При учете ангармонизма V (x) производящий функционал представляется дефор-мированным произведением типа (41), где одночастичная составляющая имеет вид (ср. с формулой (42))…”
unclassified
“…where an exponent q plays the role of the self-similarity degree, λ is an arbitrary factor playing the role of deformation of self-similar systems for which the homogeneous functions are the basis of the statistical theory related [31]. To this end, the eigen-values of the Jackson derivative (6) determined on the set of the homogeneous functions represent the basic numbers (2):…”
Section: Preliminariesmentioning
confidence: 99%
“…Moreover, being based on a scale transformation related to the Jackson q-derivative and q-integral, the basic-deformed calculus is very well suited to describe multifractal sets [26,27]. Displaying critical phenomena of the type of growth processes, rupture, earthquake, financial crashes, these systems reveal a discrete scale invariance with the existence of log-periodic oscillations deriving from a partial breakdown of the continuous scale invariance symmetry into a discrete one -as occurs, for example, in hierarchical lattices [28,29,30,31].…”
Section: Introductionmentioning
confidence: 99%
“…At determination of the dependence of both moments (19) and (20) on the deformation λ, one needs to take into account that parameter q is not free because a self-similarity condition restricts its value by the equation [7]…”
Section: Harmonic Approachmentioning
confidence: 99%