2022
DOI: 10.1080/23799927.2022.2072400
|View full text |Cite
|
Sign up to set email alerts
|

Self-stabilizing algorithm for minimal (α,β)-dominating set

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(5 citation statements)
references
References 25 publications
0
5
0
Order By: Relevance
“…If we adopt “>1$$ >1 $$” instead, C$$ C $$ would not be closed. It means that, in the function italicfminfalse(ifalse)$$ fmin(i) $$ in Algorithm 1 presented later, there exists no minimum value so that the domination is maintained, and there exists no minimal domination. α$$ \alpha $$‐domination (MADS)A set SV$$ S\subseteq V $$ is an α$$ \alpha $$ ‐dominating set 26 iff false|SNfalse(ufalse)false|false/false|Nfalse(ufalse)false|α$$ \mid S\cap N(u)\mid /\mid N(u)\mid \ge \alpha $$ for each uVprefix−S$$ u\in V-S $$. Here, α$$ \alpha $$ is a real number such that 0<α1$$ 0<\alpha \le 1 $$.…”
Section: Bounded Lattice Domination: a Unified Frameworkmentioning
confidence: 99%
See 4 more Smart Citations
“…If we adopt “>1$$ >1 $$” instead, C$$ C $$ would not be closed. It means that, in the function italicfminfalse(ifalse)$$ fmin(i) $$ in Algorithm 1 presented later, there exists no minimum value so that the domination is maintained, and there exists no minimal domination. α$$ \alpha $$‐domination (MADS)A set SV$$ S\subseteq V $$ is an α$$ \alpha $$ ‐dominating set 26 iff false|SNfalse(ufalse)false|false/false|Nfalse(ufalse)false|α$$ \mid S\cap N(u)\mid /\mid N(u)\mid \ge \alpha $$ for each uVprefix−S$$ u\in V-S $$. Here, α$$ \alpha $$ is a real number such that 0<α1$$ 0<\alpha \le 1 $$.…”
Section: Bounded Lattice Domination: a Unified Frameworkmentioning
confidence: 99%
“…A trivial solution is ffalse(ufalse)=1$$ f(u)=1 $$ for each uV$$ u\in V $$. Ufalse{0,1false}$$ U\equiv \left\{0,1\right\} $$. Cfalse(g0,g1,,gdfalse)false(g0=0false)false(=1dgfalse/dαfalse)false(g0=1false)$$ C\left({g}_0,{g}_1,\dots, {g}_d\right)\equiv \left({g}_0=0\right)\wedge \left({\sum}_{\ell =1}^d{g}_{\ell }/d\ge \alpha \right)\vee \left({g}_0=1\right) $$. false(α,βfalse)$$ \left(\alpha, \beta \right) $$‐domination (MABDS) when αβ$$ \alpha \ge \beta $$A set SV$$ S\subseteq V $$ is an false(α,βfalse)$$ \left(\alpha, \beta \right) $$ ‐dominating set 26 iff false|SNfalse(ufalse)false|false/false|Nfalse(ufalse)false|α$$ \mid S\cap N(u)\mid /\mid N(u)\mid \ge \alpha $$ for each uVprefix−S$$ u\in V-S $$, and false|SNfalse(ufalse)false|false/false|Nfalse(…”
Section: Bounded Lattice Domination: a Unified Frameworkmentioning
confidence: 99%
See 3 more Smart Citations