Nowadays, the coronavirus pandemic has and is still causing large numbers of deaths and infected people. Although governments all over the world have taken severe measurements to slow down the virus spreading (e.g., travel restrictions, suspending all sportive, social, and economic activities, quarantines, social distancing, etc.), a lot of persons have died and a lot more are still in danger. Indeed, a recently conducted study [1] has reported that 79% of the confirmed infections in China were caused by undocumented patients who had no symptoms. In the same context, in numerous other countries, since coronavirus takes several days before the emergence of symptoms, it has also been reported that the known number of infections is not representative of the real number of infected people (the actual number is expected to be much higher). That is to say, asymptomatic patients are the main factor behind the large quick spreading of coronavirus and are also the major reason that caused governments to lose control over this critical situation. To contribute to remedying this global pandemic, in this paper, we propose an IoT a investigation system that was specifically designed to spot both undocumented patients and infectious places. The goal is to help the authorities to disinfect high-contamination sites and confine persons even if they have no apparent symptoms. The proposed system also allows determining all persons who had close contact with infected or suspected patients. Consequently, rapid isolation of suspicious cases and more efficient control over any pandemic propagation can be achieved.
Graph matching is a comparison process of two objects represented as graphs through finding a correspondence between vertices and edges. This process allows defining a similarity degree (or dissimilarity) between the graphs. Generally, graph matching is used for extracting, finding and retrieving any information or sub-information that can be represented by graphs. In this paper, a new consistency rule is proposed to tackle with various problems of graph matching. After, using the proposed rule as a necessary and sufficient condition for the graph isomorphism, we generalize it for subgraph isomorphism, homomorphism and for an example of inexact graph matching. To determine whether there is a matching or not, a backtracking algorithm called CRGI2 is presented who checks the consistency rule by exploring the overall search space. The tree-search is consolidated with a tree pruning technique that eliminates the unfruitful branches as early as possible. Experimental results show that our algorithm is efficient and applicable for a real case application in the information retrieval field. On the efficiency side, due to the ability of the proposed rule to eliminate as early as possible the incorrect solutions, our algorithm outperforms the existing algorithms in the literature. For the application side, the algorithm has been successfully tested for querying a real dataset that contains a large set of e-mail messages.
Nowadays, the coronavirus pandemic has and is still causing large numbers of deaths and infected people. Although governments all over the world have taken severe measurements to slow down the virus spreading (e.g., travel restrictions, suspending all sportive, social, and economic activities, quarantines, social distancing, etc.), a lot of persons have died and a lot more are still in danger. Indeed, a recently conducted study [1] has reported that 79% of the confirmed infections in China were caused by undocumented patients who had no symptoms. In the same context, in numerous other countries, since coronavirus takes several days before the emergence of symptoms, it has also been reported that the known number of infections is not representative of the real number of infected people (the actual number is expected to be much higher). That is to say, asymptomatic patients are the main factor behind the large quick spreading of coronavirus and are also the major reason that caused governments to lose control over this critical situation. To contribute to remedying this global pandemic, in this paper, we propose an IoT 1 investigation system that was specifically designed to spot both undocumented patients and infectious places. The goal is to help the authorities to disinfect high-contamination sites and confine persons even if they have no apparent symptoms. The proposed system also allows determining all persons who had close contact with infected or suspected patients. Consequently, rapid isolation of suspicious cases and more efficient control over any pandemic propagation can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.