Nowadays, the coronavirus pandemic has and is still causing large numbers of deaths and infected people. Although governments all over the world have taken severe measurements to slow down the virus spreading (e.g., travel restrictions, suspending all sportive, social, and economic activities, quarantines, social distancing, etc.), a lot of persons have died and a lot more are still in danger. Indeed, a recently conducted study [1] has reported that 79% of the confirmed infections in China were caused by undocumented patients who had no symptoms. In the same context, in numerous other countries, since coronavirus takes several days before the emergence of symptoms, it has also been reported that the known number of infections is not representative of the real number of infected people (the actual number is expected to be much higher). That is to say, asymptomatic patients are the main factor behind the large quick spreading of coronavirus and are also the major reason that caused governments to lose control over this critical situation. To contribute to remedying this global pandemic, in this paper, we propose an IoT a investigation system that was specifically designed to spot both undocumented patients and infectious places. The goal is to help the authorities to disinfect high-contamination sites and confine persons even if they have no apparent symptoms. The proposed system also allows determining all persons who had close contact with infected or suspected patients. Consequently, rapid isolation of suspicious cases and more efficient control over any pandemic propagation can be achieved.
Automated semantic web service composition is one of the critical research challenges of service-oriented computing, since it allows users to create an application simply by specifying the inputs that the application requires, the outputs it should produce, and any constraints it should respect. The composition problem has been handled using a variety of techniques, from Artificial Intelligence (AI) planning to optimization algorithms. However no approach so far has focused on handling three composition dimensions simul
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.