2020
DOI: 10.48550/arxiv.2007.11192
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks

Abstract: Representation learning methods for heterogeneous networks produce a low-dimensional vector embedding for each node that is typically fixed for all tasks involving the node. Many of the existing methods focus on obtaining a static vector representation for a node in a way that is agnostic to the downstream application where it is being used. In practice, however, downstream tasks such as link prediction require specific contextual information that can be extracted from the subgraphs related to the nodes provid… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?