Developing prediction models for emerging infectious diseases from relatively small numbers of cases is a critical need for improving pandemic preparedness. Using COVID-19 as an exemplar, we propose a transfer learning methodology for developing predictive models from multi-modal electronic healthcare records by leveraging information from more prevalent diseases with shared clinical characteristics. Our novel hierarchical, multi-modal model ($${\textsc {TransMED}}$$ T R A N S MED ) integrates baseline risk factors from the natural language processing of clinical notes at admission, time-series measurements of biomarkers obtained from laboratory tests, and discrete diagnostic, procedure and drug codes. We demonstrate the alignment of $${\textsc {TransMED}}$$ T R A N S MED ’s predictions with well-established clinical knowledge about COVID-19 through univariate and multivariate risk factor driven sub-cohort analysis. $${\textsc {TransMED}}$$ T R A N S MED ’s superior performance over state-of-the-art methods shows that leveraging patient data across modalities and transferring prior knowledge from similar disorders is critical for accurate prediction of patient outcomes, and this approach may serve as an important tool in the early response to future pandemics.
Developing prediction models for emerging infectious diseases from relatively small numbers of cases is a critical need for improving pandemic preparedness. Using COVID-19 as an exemplar, we propose a transfer learning methodology for developing predictive models from multi-modal electronic healthcare records by leveraging information from more prevalent diseases with shared clinical characteristics. Our novel hierarchical, multi-modal model (TransMED) integrates baseline risk factors from the natural language processing of clinical notes at admission, time-series measurements of biomarkers obtained from laboratory tests, and discrete diagnostic, procedure and drug codes. We demonstrate the alignment of TransMED's predictions with well-established clinical knowledge about COVID-19 through univariate and multivariate risk factor driven sub-cohort analysis. TransMED's superior performance over state-of-the-art methods shows that leveraging patient data across modalities and transferring prior knowledge from similar disorders is critical for accurate prediction of patient outcomes, and this approach may serve as an important tool in the early response to future pandemics.
Representation learning methods for heterogeneous networks produce a low-dimensional vector embedding for each node that is typically fixed for all tasks involving the node. Many of the existing methods focus on obtaining a static vector representation for a node in a way that is agnostic to the downstream application where it is being used. In practice, however, downstream tasks such as link prediction require specific contextual information that can be extracted from the subgraphs related to the nodes provided as input to the task. To tackle this challenge, we develop SLiCE, a framework bridging static representation learning methods using global information from the entire graph with localized attention driven mechanisms to learn contextual node representations. We first pre-train our model in a self-supervised manner by introducing higher-order semantic associations and masking nodes, and then fine-tune our model for a specific link prediction task. Instead of training node representations by aggregating information from all semantic neighbors connected via metapaths, we automatically learn the composition of different metapaths that characterize the context for a specific task without the need for any pre-defined metapaths. SLiCE significantly outperforms both static and contextual embedding learning methods on several publicly available benchmark network datasets. We also interpret the semantic association matrix and provide its utility and relevance in making successful link predictions between heterogeneous nodes in the network. CCS CONCEPTS• Mathematics of computing → Graph algorithms; • Computing methodologies → Learning latent representations; Neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.