When we listen to speech, our brain's neurophysiological responses "track" its acoustic features, but it is less well understood how these auditory responses are modulated by linguistic content. Here, we recorded magnetoencephalography (MEG) responses while subjects listened to four types of continuous-speech-like passages: speech-envelope modulated noise, English-like non-words, scrambled words, and narrative passage. Temporal response function (TRF) analysis provides strong neural evidence for the emergent features of speech processing in cortex, from acoustics to higher-level linguistics, as incremental steps in neural speech processing. Critically, we show a stepwise hierarchical progression of progressively higher order features over time, reflected in both bottom-up (early) and top-down (late) processing stages. Linguistically driven top-down mechanisms take the form of late N400-like responses, suggesting a central role of predictive coding mechanisms at multiple levels. As expected, the neural processing of lower-level acoustic feature responses is bilateral or right lateralized, with left lateralization emerging only for lexical-semantic features. Finally, our results identify potential neural markers of the computations underlying speech perception and comprehension.