2019
DOI: 10.15622/sp.2019.18.6.1381-1406
|View full text |Cite
|
Sign up to set email alerts
|

Semantic Text Segmentation from Synthetic Images of Full-Text Documents

Abstract: An algorithm (divided into multiple modules) for generating images of full-text documents is presented. These images can be used to train, test, and evaluate models for Optical Character Recognition (OCR). The algorithm is modular, individual parts can be changed and tweaked to generate desired images. A method for obtaining background images of paper from already digitized documents is described. For this, a novel approach based on Variational AutoEncoder (VAE) to train a generative model was used. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
2
2

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 0 publications
0
1
0
1
Order By: Relevance
“…The second tested method inspired by [ 23 , 24 , 25 ] is built upon a feed-forward fully-convolutional neural network (CNN), with an encoder–decoder structure. Based on our previous research [ 26 ], we believe that such a structure is perfectly suitable for semantic segmentation tasks. Firstly, the encoder compresses the data from raw image pixels on the input into a feature vector representation.…”
Section: Methodsmentioning
confidence: 99%
“…The second tested method inspired by [ 23 , 24 , 25 ] is built upon a feed-forward fully-convolutional neural network (CNN), with an encoder–decoder structure. Based on our previous research [ 26 ], we believe that such a structure is perfectly suitable for semantic segmentation tasks. Firstly, the encoder compresses the data from raw image pixels on the input into a feature vector representation.…”
Section: Methodsmentioning
confidence: 99%
“…[1]. Алгоритмы распознавания нашли применение в промышленности, например, при контроле состояния оборудования, контроле ношения средств индивидуальной защиты, контроле качества сырья, полуфабрикатов и готовой продукции [1, 2], аутентификации персонала [3], а также в оцифровке текстов [4]. Решение задач распознавания объектов внешнего мира является одним из ключевых элементов в создании автономных систем, таких как автомобили с автопилотом [5], автономные робототехнические системы [6,7], системы дополненной реальности [8].…”
Section: Introductionunclassified