DOI: 10.17488/rmib.37.1.4
|View full text |Cite
|
Sign up to set email alerts
|

SEMG signal acquisition system for muscle fatigue detection

Abstract: This paper presents the development of a system for acquiring and processing of surface myoelectric signals or SEMG. The proposed system acquires signals SEMG skin surface using AgCl surface electrodes. The system has an amplification step and hardware filtering to streamline the processing time. Developed software for processing the Fourier transform SEMG amplified and filtered signal. Unlike other systems for acquisition of biological signals, which are developed for therapy or rehabilitation, this system is… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 20 publications
0
1
0
2
Order By: Relevance
“…On the other hand, a desirable feature for data recording electrodes is their capability for avoiding overpotentials due to polarization. A silver chloride (Ag/AgCl) electrode complies with this feature [67]. In this regard, 13 out of the 27 works that consider bipolar sensors, reported that the sensors were constructed using Ag/AgCl, while the remaining 14, do not specify the construction material of the sensors employed.…”
Section: E: Sensor Features (Configuration Construction Materials Andmentioning
confidence: 99%
“…On the other hand, a desirable feature for data recording electrodes is their capability for avoiding overpotentials due to polarization. A silver chloride (Ag/AgCl) electrode complies with this feature [67]. In this regard, 13 out of the 27 works that consider bipolar sensors, reported that the sensors were constructed using Ag/AgCl, while the remaining 14, do not specify the construction material of the sensors employed.…”
Section: E: Sensor Features (Configuration Construction Materials Andmentioning
confidence: 99%
“…Para poder determinar el error de predicción del nivel de embalse de agua en el futuro (N+1) durante el entrenamiento se utilizó una configuración CLP (predicción a lazo cerrado) según lo reportado en [11]. Además, el número de neuronas de entrada y el número de capas ocultas de la RNA fueron determinadas a partir del PSD (densidad espectral de potencia) de las tres señales de entrada siguiendo los lineamientos establecidos en [7], [12], [13]. En particular, la PSD muestra las frecuencias a las cuales las señales de entrada son más fuertes, y de esta manera se combina el número de neuronas.…”
Section: Descripción Del Modelo Planta Basado En Rnaunclassified
“…Se basa en una biblioteca de manipulación de tensores especializada y bien optimizada, que actúa como el "motor de back-end" de Keras. En lugar de elegir una sola biblioteca de tensores y hacer que la implementación de Keras esté ligada a esa biblioteca, Keras maneja el problema de una manera modular, y varios motores back-end diferentes pueden conectarse sin problemas a Keras [13].…”
Section: Algoritmos De Entrenamientounclassified