Compressed medical imaging (CMI) is a medical image sampling process with several samples lower than the Nyquist-Shannon sampling theorem for efficient image sampling; therefore, speeds up the processing time of medical applications. In comparison to previous approaches focusing on singlelayer images analysis, this paper proposes CMI using RGB-based sparsity averaging with reweighted analysis (RGB-SARA). The proposed RGB-SARA method is based on the spread spectrum (SS) sampling method, sparsity averaging (SA), basis pursuit denoise (BPDN) reconstruction method, and reweighted analysis (RA). The CS-based SS sampling method compresses each sample in the specific RGB layer followed by SA and BPDN with RA as a sparsity basis and to enhance the performance of CMI reconstruction, respectively. A detailed results analysis is presented in terms of signal-to-noise ratio (SNR), average SNR (ASNR), structural similarity index (SSIM), and processing time demonstrating the efficacy of the proposed RGB-SARA over conventional CMI (Haar, Daubechies 8 (Db8), and curvelet). A successful demonstration is presented proving that the proposed RGB-SARA is a potential of a new compression method for medical images with high visual quality and less processing time.INDEX TERMS Compressed imaging, RGB-based, reweighted analysis, sparsity averaging, wireless capsule endoscopy.