Fibroblast-like synoviocytes (FLS) reside in the synovial membrane of diarthrodial joints and are exposed to a dynamic fluid environment that presents both physical and chemical stimuli. The ability of FLS to sense and respond to these stimuli plays a key role in their normal function, and is implicated in the alterations to function that occur in osteoarthritis (OA). The present work characterizes the response of FLS to fluid flow-induced shear stress via real-time calcium imaging, and tests the hypothesis that this response is modulated by interleukin-1α (IL-1α), a cytokine elevated in OA. FLS demonstrated a robust calcium signaling response to fluid shear that was dose dependent upon stress level and required both external and internal calcium sources. Preconditioning with 10 ng/mL IL-1α for 24 hrs heightened this shear stress response by significantly increasing the percent of responding cells and peak magnitude, while significantly decreasing the time for a peak to occur. Intercellular communication via gap junctions was found to account for a portion of the FLS population response in normal conditions, and was significantly increased by IL-1α preconditioning. IL-1α was also found to significantly increase average length and incidence of the primary cilia, an organelle commonly implicated in shear mechanosensing. These findings suggest that the elevated levels of IL-1α found in the OA environment heighten FLS sensitivity to fluid shear by altering both intercellular communication and individual cell sensitivity, which could affect downstream functions and contribute to progression of the disease state.