In the realm of medical image analysis, the cost associated with acquiring accurately labeled data is prohibitively high. To address the issue of label scarcity, semi-supervised learning methods are employed, utilizing unlabeled data alongside a limited set of labeled data. This paper presents a novel semi-supervised medical segmentation framework, DCCLNet (deep consistency collaborative learning UNet), grounded in deep consistent co-learning. The framework synergistically integrates consistency learning from feature and input perturbations, coupled with collaborative training between CNN (convolutional neural networks) and ViT (vision transformer), to capitalize on the learning advantages offered by these two distinct paradigms. Feature perturbation involves the application of auxiliary decoders with varied feature disturbances to the main CNN backbone, enhancing the robustness of the CNN backbone through consistency constraints generated by the auxiliary and main decoders. Input perturbation employs an MT (mean teacher) architecture wherein the main network serves as the student model guided by a teacher model subjected to input perturbations. Collaborative training aims to improve the accuracy of the main networks by encouraging mutual learning between the CNN and ViT. Experiments conducted on publicly available datasets for ACDC (automated cardiac diagnosis challenge) and Prostate datasets yielded Dice coefficients of 0.890 and 0.812, respectively. Additionally, comprehensive ablation studies were performed to demonstrate the effectiveness of each methodological contribution in this study.