Current deep domain adaptation methods used in computer vision have mainly focused on learning discriminative and domain-invariant features across different domains. In this paper, we present a novel approach that bridges the domain gap by projecting the source and target domains into a common association space through an unsupervised "cross-grafted representation stacking" (CGRS) mechanism. Specifically, we construct variational auto-encoders (VAE) for the two domains, and form bidirectional associations by cross-grafting the VAEs' decoder stacks. Furthermore, generative adversarial networks (GAN) are employed for label alignment (LA), mapping the target domain data to the known label space of the source domain. The overall adaptation process hence consists of three phases: feature representation learning by VAEs, association generation, and association label alignment by GANs. Experimental results demonstrate that our CGRS-LA approach outperforms the state-of-the-art on a number of unsupervised domain adaptation benchmarks.
We propose a cross-domain latent modulation mechanism within a variational autoencoders (VAE) framework to enable improved transfer learning. Our key idea is to procure deep representations from one data domain and use it as perturbation to the reparameterization of the latent variable in another domain. Specifically, deep representations of the source and target domains are first extracted by a unified inference model and aligned by employing gradient reversal. Second, the learned deep representations are cross-modulated to the latent encoding of the alternate domain. The consistency between the reconstruction from the modulated latent encoding and the generation using deep representation samples is then enforced in order to produce inter-class alignment in the latent space. We apply the proposed model to a number of transfer learning tasks including unsupervised domain adaptation and image-toimage translation. Experimental results show that our model gives competitive performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.