Proceedings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014) 2014
DOI: 10.3115/v1/s14-1004
|View full text |Cite
|
Sign up to set email alerts
|

Sense and Similarity: A Study of Sense-level Similarity Measures

Abstract: In this paper, we investigate the difference between word and sense similarity measures and present means to convert a state-of-the-art word similarity measure into a sense similarity measure. In order to evaluate the new measure, we create a special sense similarity dataset and re-rate an existing word similarity dataset using two different sense inventories from WordNet and Wikipedia. We discover that word-level measures were not able to differentiate between different senses of one word, while sense-level m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2015
2015
2017
2017

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 11 publications
(9 reference statements)
0
1
0
1
Order By: Relevance
“…Several approaches have exploited information from dictionaries such as the Longman Dictionary of Contemporary English, thesauri such as Roget's [44] and Macquarie [45], or integrated knowledge resources such as BabelNet [18] for their similarity computation [46][47][48][49][50]. Collaboratively-constructed resources such as Wikipedia [51][52][53] have also been used extensively as lexical resources for measuring semantic similarity.…”
Section: Sense-level Similaritymentioning
confidence: 99%
“…Several approaches have exploited information from dictionaries such as the Longman Dictionary of Contemporary English, thesauri such as Roget's [44] and Macquarie [45], or integrated knowledge resources such as BabelNet [18] for their similarity computation [46][47][48][49][50]. Collaboratively-constructed resources such as Wikipedia [51][52][53] have also been used extensively as lexical resources for measuring semantic similarity.…”
Section: Sense-level Similaritymentioning
confidence: 99%
“…Bƣớc 6. Tính độ tƣơng tự của các cặp từ theo kỹ thuật m (công thức 14). Độ tƣơng tự của từ u và v bằng hệ số α nếu chúng không liên thông trên đồ thị tƣơng tự G. Ngƣợc lại, nếu u liên thông với v, độ tƣơng tự của hai từ đƣợc đo bằng tổng của độ tƣơng tự tính theo kỹ thuật m với một lƣợng tỷ lệ thuận với độ tƣơng tự cực đại và tỷ lệ nghịch với số đỉnh trung gian trên đƣờng đi tối ƣu giữa u và v. Trong đó Length(u,v) là số đỉnh trung gian trên đƣờng đi ngắn nhất từ…”
unclassified