Increasing climate aridity and drought, exacerbated by global warming, are increasing risks for western United States of America (U.S.A.) rainfed farming, and challenging producers’ capacity to maintain production and profitability. With agricultural water demand in the region exceeding limited supplies and fewer opportunities to develop new water sources, rainfed agriculture is under increasing pressure to meet the nation’s growing food demands. This study examines three major western U.S.A. rainfed crops: barley, spring wheat, and winter wheat. We analyzed the relationship between crop repurposing (the ratio of acres harvested for grain to the total planted acres) to seasonal climatic water deficit (CWD). To isolate the climate signal from economic factors, our analysis accounted for the influence of crop prices on grain harvest. We used historical climate and agricultural data between 1958 and 2020 to model crop repurposing (e.g. forage) across the observed CWD record using a fixed effect model. Our methodology is applicable for any region and incorporates regional differences in farming and economic drivers. Our results indicate that farmers are less likely to harvest barley and spring wheat for grain when the spring CWD is above average. Of the major winter wheat growing regions, only the Northern High Plains in Texas showed a trend of decreasing grain harvest during high CWD. For the majority of major crop growing regions, grain prices increased with lower levels of grain harvest. Interestingly, winter wheat repurposing is significantly higher in the southern Great Plains (~50% harvested for grain) compared to the rest of the West (~90%). Our results highlight that the major barley and spring wheat regions’ grain harvests are vulnerable to high spring CWD and low summer CWD, while winter wheat grain harvest is unaffected by variable CWD in most of the West.