“…The techniques used in these studies included support vector machine (SVM) [32,33,35,38,42,56,69], linear SVM [24,27,41,46,60], and SVM with a radial basis function kernel [24,27,46,51,65-67]. Regression techniques included ridge regression [28], linear regression [37,58], log-linear regression [53,59], logistic regression [25,31,33,37,48,49,51], binary logistic regression with elastic net regularization [41,43], linear regression with stepwise selection [39,55,64], stepwise logistic regression with forward selection [50], regularized multinomial logistic regression [29], linear support vector regression [45,55], least absolute shrinkage and selection operator [55,68], and multivariate adaptive regression splines [55]. Other algorithms used for binary classification were decision trees [35,51,56,62,63], random forest [26,48,51], rules decision [62], naive Bayes [24,35,51,56,62,69], k-nearest neighbor [24,56], maximum entropy [42], neural network [69], and deep learning neural network [57].…”