Graphic abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, SARS-CoV-2, has recently emerged as a pandemic. Here, an attempt has been made through
in-silico
high throughput screening to explore the antiviral compounds from traditionally used plants for antiviral treatments in India namely, Tea, Neem and Turmeric, as potential inhibitors of two widely studied viral proteases, main protease (Mpro) and papain-like protease (PLpro) of the SARS-CoV-2. Molecular docking study using BIOVIA Discovery Studio 2018 revealed, (−)-epicatechin-3-O-gallate (ECG), a tea polyphenol has a binding affinity toward both the selected receptors, with the lowest CDocker energy − 46.22 kcal mol
−1
for SARS-CoV-2 Mpro and CDocker energy − 44.72 kcal mol
−1
for SARS-CoV-2 PLpro, respectively. The SARS-CoV-2 Mpro complexed with (−)-epicatechin-3-O-gallate, which had shown the best binding affinity was subjected to molecular dynamics simulations to validate its binding affinity, during which, the root-mean-square-deviation values of SARS-CoV-2 Mpro–Co-crystal ligand (N3) and SARS-CoV-2 Mpro- (−)-epicatechin-3-O-gallate systems were found to be more stable than SARS-CoV-2 Mpro system. Further, (−)-epicatechin-3-O-gallate was subjected to QSAR analysis which predicted IC
50
of 0.3281 nM against SARS-CoV-2 Mpro. Overall, (−)-epicatechin-3-O-gallate showed a potential binding affinity with SARS-CoV-2 Mpro and could be proposed as a potential natural compound for COVID-19 treatment.
Supplementary Information
The online version contains supplementary material available at 10.1007/s11030-021-10211-9.