Absolute measurement of residual absorption in optical coatings is steadily becoming more important in thin film characterization, in particular with respect to high power laser applications. A summary is given on the current ability of the laser induced deflection (LID) technique to serve sensitive photo-thermal absorption measurements combined with reliable absolute calibration based on an electrical heater approach. To account for different measurement requirements, several concepts have been derived to accordingly adapt the original LID concept. Experimental results are presented for prominent UV and deep UV laser wavelengths, covering a variety of factors that critically can influence the absorption properties in optical coatings e.g., deposition process, defects and impurities, intense laser irradiation and surface/interface engineering. The experimental findings demonstrate that by combining high sensitivity with absolute calibration, photo-thermal absorption measurements are able to be a valuable supplement for the characterization of optical thin films and coatings.