Nanocrystalline platinum with different morphologies is synthesized via electrochemical deposition technique. The nucleation mechanism and its structural effect over the electrodeposited Pt on carbon electrodes have been systematically studied. Powder X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy are employed to study nucleation, oxidation states, and Pt structure growth on a carbon electrode. This study reports significant development of Pt metal nanoparticles with different morphologies such as a sphere, flower, core-flower, and rod-like structure directly fabricated on carbon electrode while tuning the deposition parameters such as current density, time, temperature, pH during the deposition process. The proposed electrochemical route represents a superior fabrication procedure for large-scale electrode fabrication compared to a conventional method for preparing membrane electrode assemblies for fuel cell stacks.