This work presents the development and characterization of a self-powered electrochemical lactate biosensor for real-time monitoring of lactic acid. The bioanode and biocathode were modified with D-lactate dehydrogenase (D-LDH) and bilirubin oxidase (BOD), respectively, to facilitate the oxidation and reduction of lactic acid and molecular oxygen. The bioelectrodes were arranged in a parallel configuration to construct the biofuel cell. This biofuel cell's current-voltage characteristic was analyzed in the presence of various lactic acid concentrations over a range of 1-25 mM. An open circuit voltage of 395.3 mV and a short circuit current density of 418.8 µA/cm 2 were obtained when operating in 25 mM lactic acid. Additionally, a 10 pF capacitor was integrated via a charge pump circuit to the biofuel cell to realize the self-powered lactate biosensor with a footprint of 1.4 cm × 2 cm. The charge pump enabled the boosting of the biofuel cell voltage in bursts of 1.2-1.8 V via the capacitor. By observing the burst frequency of a 10 pF capacitor, the exact concentration of lactic acid was deduced. As a self-powered lactate sensor, a linear dynamic range of 1-100 mM lactic acid was observed under physiologic conditions (37 • C, pH 7.4) and the sensor exhibited an excellent sensitivity of 125.88 Hz/mM-cm 2 . This electrochemical lactate biosensor has the potential to be used for the real-time monitoring of lactic acid level in biological fluids.
We present the first demonstration of a fully-flexible, self-powered glucose indicator system that synergizes two flexible electronic technologies: a flexible self-powering unit in the form of a biofuel cell, with a flexible electronic device - a circuit-board decal fabricated with biocompatible microbial nanocellulose. Our proof-of-concept device, comprising an enzymatic glucose fuel cell, glucose sensor and a LED indicator, does not require additional electronic equipment for detection or verification; and the entire structure collapses into a microns-thin, self-adhering, single-centimeter-square decal, weighing less than 40 mg. The flexible glucose indicator system continuously operates a light emitting diode (LED) through a capacitive charge/discharge cycle, which is directly correlated to the glucose concentration. Our indicator was shown to operate at high sensitivity within a linear glucose concentration range of 1 mM–45 mM glucose continuously, achieving a 1.8 VDC output from a flexible indicator system that deliver sufficient power to drive an LED circuit. Importantly, the results presented provide a basis upon which further development of indicator systems with biocompatible diffusing polymers to act as buffering diffusion barriers, thereby allowing them to be potentially useful for low-cost, direct-line-of-sight applications in medicine, husbandry, agriculture, and the food and beverage industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.