Soil water erosion is one of the most widespread and most damaging processes of degradation in the world. Despite the fact that extensive research on it is carried out by a large number of scientists all around the world, it still occupies a leading position among global threats. Because soil erosion is a complex and quite complicated process, small steps have to be undertaken in order to reach any relevant conclusions. In most cases, in order to simulate soil erosion processes, mathematical models are widely used that are considered useful and helpful tools since the measurement of the erosion of terrain consumes time and space and is impossible in many parts of the world. The aim of the study presented lies in an analysis of elements input into a physically-based erosion model. Those input factors directly influence the model's end results, i.e., the soil erosion processes. The article attempts to define to what extent they affect the model results and soil erosion processes as well. The specific parameters of the soil erosion model, i.e., resistance to erosion and hydraulic roughness, were determined by simulated rainfall experiments. The results identify changes in the parameters input to the final model results together with different initial conditions.