Remarkably little is known about the demography of snakes in the family Boidae. This lack of information may be attributed, in part, to low population densities on the Neotropical mainland, rendering capture‐recapture methods impractical for many species. Conversely, islands support fewer species but snake densities can be much higher. Corallus grenadensis is an arboreal boid endemic to the Grenada Bank and, relative to mainland boids, can be amazingly abundant. As young, its diet is comprised largely of native Anolis lizards, a ubiquitous and abundant food source; it then undergoes an ontogenetic shift in diet to a less abundant resource, rodents. From 2015 to 2019, we marked 254 C. grenadensis and used capture–recapture models to estimate abundance, capture probabilities, survival, and the proportion of transients. We hypothesized that the transient effect would increase with body size (snout–vent length [SVL]), prompted by their ontogenetic shift in diet. Capture probabilities increased with sampling effort and decreased with increasing SVL. Abundance ranged from 96 to 141 individuals and annual resident survival was 0.71, 95% confidence interval (CI) = 0.54–0.83. The proportion of transients increased with increasing SVL, with the estimate being distinguishable from zero starting at ~810 mm SVL, coinciding with the size at which their dietary shift from ectothermic to endothermic prey begins. Ontogenetic dietary shifts are widespread in snakes and occur in at least 11 of 17 species of West Indian boids. Thus, the prominence of transients in our study may be indicative of its demographic and ecological importance among other snake species.