This investigation focused on remotely detecting beaver impoundments and dams along the boreal-like peatland ecotones enmeshing Cranberry Glades Botanical Area, a National Natural Landmark in mountainous West Virginia, USA. Beaver (Castor spp.) are renowned for their role as ecosystem engineers. They can alter local hydrology, change the ratios of meadow to woodland, act as buffers against drought and wildfire, and influence important climate parameters such as carbon retention and methanogenesis. The Cranberry Glades (~1000 m a.s.l.) occupy ~300 ha, including ~40 ha of regionally rare, open peatlands. Given the likely historical role of beaver activity in the formation and maintenance of peatland conditions at Cranberry Glades, monitoring of recent activity may be useful in predicting future changes. We analyzed remotely sensed data to identify and reconstruct shifting patterns of surface hydrology associated with beaver ponds and dams and developed a novel application of geomorphons to detect them, aided by exploitation of absences and errors in Lidar data. We also quantified decadal-timescale dynamics of beaver activity by tallying detectable active impoundments between 1990–2020, revealing active/fallow cycles and changing numbers of impoundments per unit area of suitable riparian habitat. This research presents both a practical approach to monitoring beaver activity through analysis of publicly available data and a spatiotemporal reconstruction of three decades of beaver activity at this rare and imperiled “Arctic Island” of the southern High Alleghenies.