The designed MYRRHA reactor, in its subcritical version, will be equipped with a set of detectors monitoring its condition by measuring the current value of negative reactivity, which is a crucial parameter for its safe operation. In subcritical systems, accurate and precise measurement of negative reactivity is disturbed by the so-called spatial effect, i.e., the response of detectors depends on their placement in the reactor core. This paper focuses on the Monte Carlo simulations of reactivity measurements using the area method for natU, 238U, 241Am, 239Pu, and 232Th detectors. The simulations were performed in six positions with increasing distance from the center of the core and at three axial levels. The obtained results allow for selecting optimum locations for detectors and detector nuclides in terms of the accuracy of reactivity measurement and illustrate the dependence of the reactivity on the distance. Additionally, the possibility of using 103Rh in self-powered neutron detectors was investigated. The influence of spatial effect in calculations using the area method was directly indicated in the MYRRHA reactor core for chosen isotopes and in-core positions. The results closest to true values were obtained for the second fuel assembly for 239Pu, and the third fuel assembly for natU, 238U, 232Th, and 241Am; thus, these nuclides and positions should be preferred when selecting detectors for MYRRHA.