Global estimates of fire frequency indicate that over 70% of active fires occur in the tropics, and the size and frequency of fires are increasing every year. The majority of fires in the tropics are an unintended consequence of current land-use practices that promotes the establishment of grass and shrubland communities, which are more flammable and more adapted to fire than forests. In the Caribbean, wildland fires occur mainly in dry forests and in grasslands and crop lands. Climate change projections for the Caribbean indicate increasing area of drylands and subsequent increasing potential for wildland fire. We assessed the last decade of fire occurrence records for Puerto Rico to quantify the relative importance of time, climate, land cover, and population to inform predictive models of fire occurrence for projecting future scenarios of fire risk. Kruskal-Wallis, generalized linear models, robust regression, simple and multiple regressions, and tree models were used. We found that hour of the day (time), mean minimum temperature (climate), and percent forest cover (land cover) significantly influenced fire occurrence, while population showed a weak effect. Many variable interactions showed to be important. These significant variables and interactions should be considered in fire-predicting models for the island.