Atmospheric rivers (ARs) are synoptic-scale features characterized by their striking geometry-extending thousands of kilometres in length and an order of magni tude less in width 1-and vertically coherent low-level moisture transport concentrated in the bottom 3 km of the atmosphere 2 (Fig. 1). In total, ARs are estimated to accomplish as much as 90% of poleward moisture transport 3,4 , which, in the North Pacific, averages 700 kg m −1 s −1 (Fig. 1b), more than twice the mean annual discharge found at the mouth of the Amazon River 5. ARs do not describe continuous moisture transport. Rather, they are continually evolving pathways that incorporate moisture from local convergence and evaporation along their track 6,7 or, in select cases, from distant source regions in the tropics or subtropics 8-12. Owing to the complexity of their evolution, our baseline knowledge of AR characteristics at the global scale is uncertain due to the dependency on identification algorithms (Box 1), with factors such as genesis, development and termination only recently being explored 13,14. However, ARs are known to operate as one part of a larger, synoptic-scale dynamical system driving the poleward transport of sensible and latent heat 4,15. They are generally found in the vicinity of extratropical cyclones. Over the North Pacific, for example, 85% of ARs are paired with extratropical cyclones 16 , consistent with their observed relationship with baroclinic instabilities and the mid-latitude storm track 3,6. However, this relationship is nuanced; only 45% of extratropical cyclones over the same region are associated with an AR 16. Similar non-linear relationships are observed in the North Atlantic, where the evolution and life cycle of a single AR can span that of several cyclones 9. While the phenomena are clearly related, their relationship is interactive, with potential implications on the inten sification of storms and the severity of precipitation impacts on land 17,18. Indeed, given their intense moisture transport and moist-neutrality, ARs exhibit conditions that are ideal for forced precipitation, either through interaction with topography or ascent along a warm conveyor belt or frontal boundary 19. Thus, when ARs make landfall, they can have a range of hydrological impacts, including precipitation extremes and related hazards,