After decades of research and development, the WSR-88D (NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data (PRD) that have the potential to improve weather observations, quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction (NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation.Citation: Zhang, G. F., and Coauthors, 2019: Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Adv. Atmos. Sci., 36(6), 571-588, https://doi.org/10.1007/s00376-019-8172-4.Article Highlights:• The current status/limitations and future challenges/opportunities of weather radar polarimetry are reviewed.• The gaps between the radar meteorology/hydrology/engineering and NWP communities are revealed, and possible approaches to bridge them discussed. • New methods and technologies that advance weather radar polarimetry to meet future needs are explored.