This brief highlights research advances on cooperative techniques for localization and communication. These two macro trends are investigated in the general context of mobile multi-agent networks for situational awareness applications, where time-varying agents of unknown locations are asked to fulfill positioning and information sharing tasks. Cooperative localization is conceived for both active and passive agents, i.e., targets to be detected and localized, and it is analyzed in vehicular and maritime environments. Communication is investigated for vehicular scenarios, where vehicles are requested to share massive data in the perspective development of connected and automated mobility systems. Both research areas rely on the integration of heterogeneous sensors and communication. Specifically, it is studied how to improve localization by exploring communication techniques as well as how to enhance communication performances by extracting information from perception sensors. The dynamic environment of multi-agent systems calls for robust, flexible and adaptive techniques, capable of profitably fuse different types of information, and the outcomes of these researches show how a statistical approach based on cooperation guarantees higher resilience, reliability and confidence.