We report the first continuous-variable quantum key distribution (CVQKD) experiment to enable the creation of 1 Mbps secure key rate over 25 km standard telecom fiber in a coarse wavelength division multiplexers (CWDM) environment. The result is achieved with two major technological advances: the use of a 1 GHz shot-noise-limited homodyne detector and the implementation of a 50 MHz clock system. The excess noise due to noise photons from local oscillator and classical data channels in CWDM is controlled effectively. We note that the experimental verification of high-bit-rate CVQKD in the multiplexing environment is a significant step closer toward large-scale deployment in fiber networks.
Real-world datasets often involve multiple views of data items, e.g. a Web page can be described by both its content and anchor texts of hyperlinks leading to it; photos in Flickr could be characterized by visual features, as well as user contributed tags. Different views provide information complementary to each other. Synthesizing multi-view features can lead to a comprehensive description of the data items, which could benefit many data analytic applications. Unfortunately, the simple idea of concatenating different feature vectors ignores statistical properties of each view and usually incurs the "curse of dimensionality" problem. We propose Multi-view Concept Learning (MCL), a novel nonnegative latent representation learning algorithm for capturing conceptual factors from multi-view data. MCL exploits both multi-view information and label information. The key idea is to learn a common latent space across different views which (1) captures the semantic relationships between data items through graph embedding regularization on labeled items, and (2) allows each latent factor to be associated with a subset of views via sparseness constraints. In this way, MCL could capture flexible conceptual patterns hidden in multi-view features. Experiments on a toy problem and three real-world datasets show that MCL performs well and outperforms baseline methods.
The recommender system is widely used in the field of e-commerce and plays an important role in guiding customers to make smart decisions. Although many algorithms are available in the recommender system, collaborative filtering is still one of the most used and successful recommendation technologies. In collaborative filtering, similarity calculation is the main issue. In order to improve the accuracy and quality of recommendations, we proposed an improved similarity model, which takes three impact factors of similarity into account to minimize the deviation of similarity calculation. Compared with the traditional similarity measure, the advantages of our proposed model are that it makes full use of rating data and solves the problem of co-rated items. To validate the efficiency of the proposed algorithm, experiments were performed on four datasets. Results show that the proposed method can effectively improve the preferences of the recommender system and it is suitable for the sparsity data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.