In this Review, we aim to provide an updated summary of the research related to hollow micro- and nanostructures, covering both their synthesis and their applications. After a brief introduction to the definition and classification of the hollow micro-/nanostructures, we discuss various synthetic strategies that can be grouped into three major categories, including hard templating, soft templating, and self-templating synthesis. For both hard and soft templating strategies, we focus on how different types of templates are generated and then used for creating hollow structures. At the end of each section, the structural and morphological control over the product is discussed. For the self-templating strategy, we survey a number of unconventional synthetic methods, such as surface-protected etching, Ostwald ripening, the Kirkendall effect, and galvanic replacement. We then discuss the unique properties and niche applications of the hollow structures in diverse fields, including micro-/nanocontainers and reactors, optical properties and applications, magnetic properties, energy storage, catalysis, biomedical applications, environmental remediation, and sensors. Finally, we provide a perspective on future development in the research relevant to hollow micro-/nanostructures.
One of the challenges in material science has been to prepare macro-or mesoporous zeolite. Although examples of their synthesis exist, there is a need for a facile yet versatile approach to such hierarchical structures. Here we report a concept for designing a single quaternary ammonium head amphiphilic template with strong ordered self-assembling ability through p-p stacking in hydrophobic side, which stabilizes the mesostructure to form singlecrystalline mesostructured zeolite nanosheets. The concept is demonstrated for the formation of a new type of MFI (zeolite framework code by International Zeolite Association) nanosheets joined with a 90°rotational boundary, which results in a mesoporous zeolite with highly specific surface area even after calcination. Low binding energies for this selfassembling system are supported by a theoretical analysis. A geometrical matching between the arrangement of aromatic groups and the zeolitic framework is speculated for the formation of single-crystalline MFI nanosheets.
Plasmonic
metal nanostructures have attracted considerable attention
for solar energy harvesting due to their capability in photothermal
conversion. However, the narrow resonant band of the conventional
plasmonic nanoparticles greatly limits their application as only a
small fraction of the solar energy can be utilized. Herein, a unique
confined seeded growth strategy is developed to synthesize black silver
nanostructures with broadband absorption in the visible and near-infrared
spectrum. Through this novel strategy, assemblages of silver nanoparticles
with widely distributed interparticle distances are generated in rod-shaped
tubular spaces, leading to strong random plasmonic coupling and accordingly
broadband absorption for significantly improved utilization of solar
energy. With excellent efficiency in converting solar energy to heat,
the resulting black Ag nanostructures can be made into thin films
floating at the air/water interface for efficient generation of clean
water steam through localized interfacial heating.
This current research progress on the fabrication of hollow nanostructures by using self-templating methods is reviewed. After a brief introduction to the unique properties and applications of hollow nanostructures and the three general fabrication routes, the discussions are focused on the five main self-templating strategies, including galvanic replacement, the Kirkendall effect, Ostwald ripening, dissolution-regrowth, and the surface-protected hollowing process. Some newly developed synthetic routes are selected and discussed in detail. In conclusion, a summary and the perspectives on the directions that might lead the future development of this exciting field are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.