In this Review, we aim to provide an updated summary of the research related to hollow micro- and nanostructures, covering both their synthesis and their applications. After a brief introduction to the definition and classification of the hollow micro-/nanostructures, we discuss various synthetic strategies that can be grouped into three major categories, including hard templating, soft templating, and self-templating synthesis. For both hard and soft templating strategies, we focus on how different types of templates are generated and then used for creating hollow structures. At the end of each section, the structural and morphological control over the product is discussed. For the self-templating strategy, we survey a number of unconventional synthetic methods, such as surface-protected etching, Ostwald ripening, the Kirkendall effect, and galvanic replacement. We then discuss the unique properties and niche applications of the hollow structures in diverse fields, including micro-/nanocontainers and reactors, optical properties and applications, magnetic properties, energy storage, catalysis, biomedical applications, environmental remediation, and sensors. Finally, we provide a perspective on future development in the research relevant to hollow micro-/nanostructures.
Colloidal plasmonic metal nanoparticles have enabled surface-enhanced Raman scattering (SERS) for a variety of analytical applications. While great efforts have been made to create hotspots for amplifying Raman signals, it remains a great challenge to ensure their high density and accessibility for improved sensitivity of the analysis. Here we report a dealloying process for the fabrication of porous Au-Ag alloy nanoparticles containing abundant inherent hotspots, which were encased in ultrathin hollow silica shells so that the need of conventional organic capping ligands for stabilization is eliminated, producing colloidal plasmonic nanoparticles with clean surface and thus high accessibility of the hotspots. As a result, these novel nanostructures show excellent SERS activity with an enhancement factor of ∼1.3 × 10(7) on a single particle basis (off-resonant condition), promising high applicability in many SERS-based analytical and biomedical applications.
Metal sulfides such as MoS 2 can serve as co-catalysts to greatly promote the overall efficiency of Fe 2+ -catalyzed advanced oxidation processes (AOPs). Unsaturated S atoms on the surface of metal sulfides can capture protons from the solution to form H 2 S and at the same time expose reductive metallic active sites to greatly accelerate the rate-limiting step of Fe 3+ /Fe 2+ conversion. The significantly enhanced efficiency of H 2 O 2 decomposition makes the AOPs viable for practical applications in the remediation of organic pollutants.
Ionic liquids (ILs) are a family of nonconventional molten salts that offer many advantages, such as negligible vapor pressures, negligible flammability, wide liquidus ranges, good thermal stability, and much synthesis flexibility. The unique solvation environment of these ILs provides new reaction or flux media for controlling formation of solid‐state materials with a minimum perturbation of morphologies. A successful lithiation via ionothermal synthesis using a cost‐effective Li halide as Li source and recyclable ILs as solvents is reported here for the direct recycling of LiNi1/3Co1/3Mn1/3O2 (NCM 111) cathodes. In addition, the ionic liquids can be readily recycled and reused after ionothermal lithiation. The lithiation of spent cathodes can enable the direct recycling of spent cathode materials in lithium‐ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.