The human high-level visual cortex comprises regions specialized for the processing of distinct types of stimuli, such as objects, animals, and human actions. How does this specialization emerge? Here, we investigated the role of sensorimotor experience in shaping the organization of the action observation network as a window on this question. Observed body movements are frequently coupled with corresponding motor codes, e.g. during monitoring one's own movements and imitation, resulting in bidirectionally connected circuits between areas involved in body movements observation (e.g., of the hand) and the motor codes involved in their execution. If the organization of the action observation network is shaped by this sensorimotor coupling, then, it should not form for body movements that do not belong to individuals' motor repertoire. To test this prediction, we used fMRI to investigate the spatial arrangement and functional properties of the hand and foot action observation circuits in individuals born without upper limbs. Multivoxel pattern decoding, pattern similarity, and univariate analyses revealed an intact hand action observation network in the individuals born without upper limbs. This suggests that the organization of the action observation network does not require effector-specific visuomotor coupling.
__________________________________________________________________________________________