Autism spectrum disorder (ASD) is characterized by social interaction and communication impairments, as well as restrictive/repetitive patterns of behavior, interests or activities, which can coexist with intellectual disability and altered sensory processing. To study the mechanisms underlying these core features of ASD, preclinical research has developed animal models with manipulations in ASD-linked genes, such as CNTNAP2. In order to fully interpret the findings from mechanistic studies, the extent to which these models display behaviors consistent with ASD must be determined. Toward that goal, we conducted an investigation of the consequences of a functional loss of Cntnap2 on ASD-related behaviors by comparing the performance of rats with a homozygous or heterozygous knockout of Cntnap2 to their wildtype littermates across a comprehensive test battery. Cntnap2 −/− rats showed deficits in sociability and social novelty, and they displayed repetitive circling and hyperlocomotion. Moreover, Cntnap2 −/− rats demonstrated exaggerated acoustic startle responses, increased avoidance to sounds of moderate intensity, and a lack of rapid audiovisual temporal recalibration; indicating changes in sensory processing at both the pre-attentive and perceptual levels. Notably, sensory behaviors requiring learned associations did not reveal genotypic differences, whereas tasks relying on automatic/implicit behaviors did. Ultimately, because these collective alterations in social, stereotypic, and sensory behaviors are phenotypically similar to those reported in individuals with ASD, our results establish the Cntnap2 knockout rat model as an effective platform to study not only the molecular and cellular mechanisms associated with ASD, but also the complex relationship between altered sensory processing and other core ASD-related behaviors.