Resilience has become a key aspect in the design of contemporary
infrastructure networks. This comes as a result of ever-increasing loads,
limited physical capacity, and fast-growing levels of interconnectedness and
complexity due to the recent technological advancements. The problem has
motivated a considerable amount of research within the last few years,
particularly focused on the dynamical aspects of network flows, complementing
more classical static network flow optimization approaches. In this tutorial
paper, a class of single-commodity first-order models of dynamical flow
networks is considered. A few results recently appeared in the literature and
dealing with stability and robustness of dynamical flow networks are gathered
and originally presented in a unified framework. In particular, (differential)
stability properties of monotone dynamical flow networks are treated in some
detail, and the notion of margin of resilience is introduced as a quantitative
measure of their robustness. While emphasizing methodological aspects
-including structural properties, such as monotonicity, that enable
tractability and scalability- over the specific applications, connections to
well-established road traffic flow models are made.Comment: accepted for publication in Annual Reviews in Control, 201