2017
DOI: 10.1002/brb3.633
|View full text |Cite
|
Sign up to set email alerts
|

Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data: A multimodal machine learning study

Abstract: BackgroundGeneralized anxiety disorder (GAD) is difficult to recognize and hard to separate from major depression (MD) in clinical settings. Biomarkers might support diagnostic decisions. This study used machine learning on multimodal biobehavioral data from a sample of GAD, MD and healthy subjects to differentiate subjects with a disorder from healthy subjects (case‐classification) and to differentiate GAD from MD (disorder‐classification).MethodsSubjects with GAD (n = 19), MD without GAD (n = 14), and health… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
45
0
3

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 72 publications
(48 citation statements)
references
References 85 publications
(122 reference statements)
0
45
0
3
Order By: Relevance
“…Almost all of the selected studies used SVM or its variant method as the primary classification method and use LOOCV for cross validation. The reason why SVM is the most popular choice among depression classification is because of its useful strengths on including a reliable theoretical foundation and its flexible response to high‐dimensional data.…”
Section: Machine Learning In Mddmentioning
confidence: 99%
“…Almost all of the selected studies used SVM or its variant method as the primary classification method and use LOOCV for cross validation. The reason why SVM is the most popular choice among depression classification is because of its useful strengths on including a reliable theoretical foundation and its flexible response to high‐dimensional data.…”
Section: Machine Learning In Mddmentioning
confidence: 99%
“…Detection of dementia (including Alzheimer's disease) [20][21][22] Detection of anxiety [23][24][25] Medicalchain-Blockchain and healthcare [26][27][28] Genetics and genomics [29][30][31] Virtual reality in healthcare [32][33][34] Social media in healthcare [35][36][37] Robotic surgery [38][39][40]…”
Section: Emergent Topics Recommended Readingsmentioning
confidence: 99%
“…Em uma análise mais generalista da produção cientí ca com foco na avaliação psicológica computadorizada, percebe-se que a grande maioria dos modelos preditivos construídos utilizam dados provenientes de exames bioquímicos, EEGs (eletroencefalogramas) e ressonâncias magnéticas (Hosseinifard et al;2013;Foland-Ross et al;Patel et al;Jiang et al;2016;Shim et al;2016;Li et al;2016;Hilbert et al;Zheng et al;. Apenas um dos trabalhos encontrados pelos autores empregou testes baseados em produção de desenhos como ferramenta de psicodiagnóstico (in Kim, Kang, Chung and joo Hong; 2012).…”
Section: Trabalhos Relacionadosunclassified
“…Na literatura recente, percebe-se crescente interesse no emprego de aprendizado de máquina, ou machine learning, para a construção de instrumentos de avaliação clínica (Seixas et al;Jiménez-Serrano et al;Carpenter et al;2016;Kim et al;Zhu et al;Hilbert et al;. Luxton (2014) acredita que aplicações que empregam aprendizado de máquina para a realização de psicodiagnóstico podem ser mais e cientes e so sticadas em relação aos métodos comuns.…”
Section: Introductionunclassified