Extreme-ultraviolet second-harmonic generation spectroscopy (XUV-SHG) is a novel spectroscopy that enables probing element-selective symmetry-broken states. This renders XUV-SHG especially useful to study surfaces, interfaces, and symmetry-broken bulk states in otherwise complex chemical environments. In a string of recent works, XUV-SHG was successfully applied to study the role of lithium in various compounds. One of the most striking recent results studied the role of Li symmetry-breaking displacement causing the emergence of polarity in the polar metal LiOsO3. Furthermore, the directional dependence of the SHG process allows geometry specific measurements. Given the femtosecond nature of the probe pulses, one can readily envision this method to be applied to study interfacial carrier dynamics in complex in-operando environments that are difficult to probe with conventional ultrafast methods.