Femtosecond stimulated Raman spectroscopy (FSRS) is a chemically specific vibrational technique that has the ability to follow structural dynamics during photoinduced processes such as charge transfer on the ultrafast timescale. FSRS has a strong background in following structural dynamics and elucidating chemical mechanisms; however, its use with solid-state materials has been limited. As photovoltaic and electronic devices rely on solid-state materials, having the ability to track the evolving dynamics during their charge transfer and transport processes is crucial. Following the structural dynamics in these solid-state materials will lead to the identification of specific chemical structures responsible for various photoinduced charge transfer reactions, leading to a greater understanding of the structure–function relationships needed to improve upon current technologies. Isolating the specific nuclear motions and molecular structures that drive a desired physical process will provide a chemical blueprint, leading to the rational design and fabrication of efficient electronic and photovoltaic devices. In this perspective, we discuss technical challenges and experimental developments that have facilitated the use of FSRS with solid-state samples, explore previous studies that have identified structure–function relationships in charge transfer reactions, and analyze the future developments that will broaden and advance the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.